The Ramsey Number of Fano Plane Versus Tight Path

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stability of the path-path Ramsey number

Here we prove a stability version of a Ramsey-type Theorem for paths. Thus in any 2-coloring of the edges of the complete graph Kn we can either find a monochromatic path substantially longer than 2n/3, or the coloring is close to the extremal coloring.

متن کامل

The Turán Number Of The Fano Plane

Moreover, the only extremal configuration can be obtained by partitioning an n-element set into two almost equal parts, and taking all the triples that intersect both of them. This extends an earlier result of de Caen and Füredi, and proves an old conjecture of V. Sós. In addition, we also prove a stability result for the Fano plane, which says that a 3-uniform hypergraph with density close to ...

متن کامل

Hypergraph Ramsey numbers: tight cycles versus cliques

For s ≥ 4, the 3-uniform tight cycle C s has vertex set corresponding to s distinct points on a circle and edge set given by the s cyclic intervals of three consecutive points. For fixed s ≥ 4 and s 6≡ 0 (mod 3) we prove that there are positive constants a and b with 2 < r(C s ,K 3 t ) < 2 bt log . The lower bound is obtained via a probabilistic construction. The upper bound for s > 5 is proved...

متن کامل

Improved Bounds for the Ramsey Number of Tight Cycles Versus Cliques

The 3-uniform tight cycle C s has vertex set Zs and edge set {{i, i+ 1, i+ 2} : i ∈ Zs}. We prove that for every s 6≡ 0 (mod 3) and s ≥ 16 or s ∈ {8, 11, 14} there is a cs > 0 such that the 3-uniform hypergraph Ramsey number r(C s ,K n ) satisfies r(C s ,K n ) < 2cn . This answers in strong form a question of the author and Rödl who asked for an upper bound of the form 2n 1+ǫs for each fixed s ...

متن کامل

The Ramsey Number for 3-Uniform Tight Hypergraph Cycles

Let C (3) n denote the 3-uniform tight cycle, that is the hypergraph with vertices v1, . . . , vn and edges v1v2v3, v2v3v4, . . . , vn−1vnv1, vnv1v2. We prove that the smallest integer N = N(n) for which every red-blue coloring of the edges of the complete 3-uniform hypergraph with N vertices contains a monochromatic copy of C (3) n is asymptotically equal to 4n/3 if n is divisible by 3, and 2n...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Electronic Journal of Combinatorics

سال: 2020

ISSN: 1077-8926

DOI: 10.37236/8374